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Core–annular flow of two fluids is examined at the onset of a non-axisymmetric
instability. This is a pattern selection problem: the bifurcating solutions are travelling
waves and standing waves. The former travel in the azimuthal direction as well as the
axial direction and would be observed as corkscrew waves. The standing waves travel
in the axial direction but not in the azimuthal direction and appear as snakes. Weakly
nonlinear interactions are studied to see whether one of these waves will be stable to
small-amplitude perturbations. Sample situations for down-flow are discussed. The
corkscrews tend to be preferred when the annulus is narrow, while snakes are more
likely when the annulus is wide.

1. Introduction
In perfect core–annular flow of two fluids, the core fluid has a cylindrical interface

of uniform radius centred on the pipe axis, surrounded by an annulus of the outer
fluid. The response of the flow to perturbations of the form exp(inθ+ iαx+σt), where
θ denotes the azimuthal angle, x the vertical axis, t the time, is examined. When
perfect core–annular flow loses stability at a finite axial wavenumber α, with other
wavenumbers stable, to an axisymmetric n = 0 disturbance, then the interface can
deform to a varicose shape (Preziosi, Chen & Joseph 1989; Joseph & Renardy 1993).
On the other hand, when the system loses stability to the n = ±1 non-axisymmetric
modes, the critical modes are proportional to exp(iθ+iαx+iωt), exp(−iθ+iαx+iωt),
and their complex conjugates. Their mode interaction can give rise to either waves
travelling in the azimuthal direction (corkscrew waves) or standing waves (snake
waves). Both of these waves travel in the axial direction. The snake waves are simply
translated along. The corkscrew waves on the other hand travel in both the axial and
azimuthal directions (figure 1).

Finite-amplitude corkscrew waves have been observed in the core–annular flow of
viscous crude oil and water (see photos in Joseph & Renardy 1993, Chap. VII; and
Joseph et al. 1997). The experiments of Bai, Chen & Joseph (1992) were conducted
in a vertical inverted loop. The oil in the vertical flow experiment is lighter than
water so that buoyancy and the pressure gradient act in the same sense in up-flow,
where the core oil is observed to produce bamboo waves, and in the opposite sense
in down-flow, where the core is compressed and may buckle in corkscrew waves.
Sketches of these structures which can be identified with different flow regimes are
shown in the review article of Joseph et al. (1997). It is possible for the snake mode
to be set up initially if the initial condition favours it, for instance when there are
bamboo waves in the up-flow part of the loop so that at the top of the loop there is
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Figure 1. (a) The n = 0 axisymmetric mode. The n = ±1 non-axisymmetric onset can give rise to
(b) corkscrews or (c) snake waves.

an azimuthal symmetry that favours the solution to be a standing wave. However, if
the corkscrews are stable and the snakes not, then this flow would later evolve into
the corkscrews.

In this paper, we address the question of whether corkscrew or snake waves
bifurcate from perfect core–annular flows. This is a standard Hopf bifurcation with
O(2) symmetry, i.e. the problem is invariant under reflection and translation in the
azimuthal coordinate θ. In this case, it is known from Ruelle (1973) that if both
standing and travelling wave solutions are supercritical, then one of them is stable,
and that if one is subcritical, then both are unstable. The equations governing
the problem and the weakly nonlinear analysis are detailed in Appendices A and
B. Section 4 outlines the application of a centre manifold reduction scheme to the
governing equations to derive the weakly nonlinear amplitude evolution equations
for the interaction of the two critical Hopf modes. This yields two coupled Landau
equations. We note however that for conditions slightly above criticality, an interval
of wavenumbers becomes unstable; consequently, there will be development of the
disturbances in space as well as in time, and a Ginzburg–Landau equation is usually
used. However, the usual Ginzburg–Landau equation does not apply to this problem
due to the presence of a long-wave mode for which the decay rate tends to zero in the
limit of infinite wavelength. In the context of two-layer plane channel flow, instead of
the Ginzburg–Landau equation, a coupled set of equations for three amplitude factors
is derived in Renardy & Renardy (1993). The first corresponds to an amplitude of a
travelling wave, the second to a long-wave modulation of the interface height, and the
third results from the pressure. For core–annular flow, we would have four amplitude
factors, two for the azimuthal travelling waves. We have chosen for simplicity to
begin with the Stuart–Landau framework. Throughout the analysis, the pressure
gradient in the flow direction is assumed to be fixed. An alternative approach would
be to keep the flow rate fixed. However, the work of Renardy (1989) on channel
flow indicates that there would not be a significant difference with either formulation
unless the Reynolds number is high.

In § 4, the stability criteria for the solutions are deduced. In § 5, the pattern selection
analysis is carried out for sample conditions in down-flow in which the annular fluid
is the more dense. In the first example, the annular fluid is the less viscous, and the
preferred pattern is found to be the corkscrews for narrow annuli and snakes for wide
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annuli. In the sample case with equal viscosity and free fall, there is a preference for
corkscrews, unless the annulus is very wide, in which case snakes are preferred.

2. Formulation of equations
Two immiscible liquids are flowing through a vertical pipe of radius R2. The

governing equations are the Navier–Stokes equations with incompressibility for each
fluid. At the interface, the velocity and shear stresses are continuous, the jump in
the normal stress is balanced by the effect of interfacial tension, and the kinematic
free surface condition holds. The interface between the two liquids is given by
r∗ = R(θ, x, t) where (r∗, θ, x∗) denotes cylindrical coordinates, x∗ points in the same
direction as the centreline base velocity (we non-dimensionalize the flow so that
the dimensionless centreline velocity is 1). For upward flow, gravity is acting in
the negative x∗-direction, and for downward flow, it is acting in the positive x∗-
direction. The flow is driven by a pressure gradient dP ∗/dx∗ = −f∗. Asterisks denote
dimensional quantities. The pipe axis is at r∗ = 0. The average value of R is denoted
by R1. The core region 0 6 r∗ 6 R(θ, x, t) is occupied by fluid 1 with viscosity µ1

and density ρ1. Fluid 2, with viscosity µ2 and density ρ2, is located in the annulus
R(θ, x, t) 6 r 6 R2. The following are four dimensionless parameters:

m = µ2/µ1, a = R2/R1, ζ = ρ2/ρ1, K = (f∗ + ρ1g)/(f∗ + ρ2g), (2.1)

where K measures the ratio of driving forces in the core and annulus.
The dimensionless variables are (r, x) = (r∗, x∗)/R1, (u, v, w) = (u∗, v∗, w∗)/W ∗

0 (0),
t = t∗W ∗

0 (0)/R1, p = p∗/[ρ1W
∗2
0 (0)], where the centreline velocity is

W ∗
0 (0) = (ρ2g + f∗)

R2
1

4µ2

A, A = mK + a2 − 1 + 2(K − 1) log a. (2.2)

The dimensionless base velocity field is (0, 0,W (r)) where

W (r) =

{
[a2 − r2 − 2(K − 1) log(r/a)]/A, 1 6 r 6 a (annulus)
1− mr2K/A, r < 1 (core).

(2.3)

The base pressure field satisfies

dP/dx = −f, [[P ]] = J/R2
1. (2.4)

The interfacial tension parameter is

J = T ∗R1ρ1/µ
2
1, (2.5)

where T ∗ denotes interfacial tension. This parameter is related to a surface tension
parameter introduced by Chandrasekhar (1961) in his study of capillary instability
of jets of viscous liquid in air. The Reynolds numbers Ri are defined by Ri =
ρiW

∗
0 (0)R1/µi, i = 1, 2, where R1/R2 = m/ζ.

We now perturb perfect core–annular flow so that the total solution is (u, v,W +
w), P +p, R/R1 = 1 +δ(θ, x, t) and consider the equations for (u, v, w, p, δ). We denote
the set of unknowns (u1, v1, w1, p1, u2, v2, w2, p2, δ) by Φ. The governing equations to
cubic order are written in the schematic form

LΦ = N2(Φ,Φ) + N3(Φ,Φ,Φ). (2.6)

This is not the amplitude equation but represents the raw governing equations shown
in Appendix A. Here the operator L incorporates the linear terms in the differential
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equations and bounday conditions, while N2 stands for the quadratic terms, and
N3 the cubics. The cubic terms arise from the Taylor expansions of the interface
conditions. As evident in Appendix A, the continuity equation has been multiplied
through by r and the momentum equations by r2. For small amplitudes, both the
quadratic and cubic terms contribute to the cubic nonlinearity in the amplitude
equations to be derived in § 4. We can write the real linear operator L in the
form A + B d/dt. We also introduce the notation L(σ) = A + σB. The problem is
characterized by six dimensionless parameters: m, a, ζ, J , K and R1.

3. Linear stability analysis
Non-axisymmetric waves in core–annular flow are mentioned in the linear stability

analyses of Preziosi et al. (1989) and Boomkamp & Miesen (1992). Hu & Patankar
(1995) have performed a linear stability analysis and found parameter regimes for
unstable situations, where mode 1 has larger growth rates than mode 0, and correlated
the wavelength of maximum growth rate with the observed wavelength for corkscrew
waves in the experiments of Bai et al. (1992). In their regimes, there are bands of
unstable wavelengths for modes 0 and or 1. For example, their figure 2 shows the
n = 1 mode to be unstable over wavenumbers less than approximately 2, and the n = 0
mode unstable for long waves and for wavenumbers approximately between 0.5 and
2.5, while the maximum growth rate is achieved by the n = 1 mode at wavenumber
approximately 0.5. In this section, we show that there are critical situations where
mode 1 onsets at a finite wavelength while other modes are stable. This complements
the correlation with the experiments in that the n = 1 mode is actually shown to be
the first mode to become unstable as a bifurcation parameter is increased.

We replace [u, v, w, p](r, θ, x, t) and δ(θ, x, t) with amplitude functions [u, v, w,
p](r) and an amplitude constant δ times exp[inθ + iαx + σt] in the usual way. The
linearized problem is of the form (A + σB)Φ = 0 where the operators A and B are
defined in Appendix A. The Chebyshev-tau scheme (Orszag 1971) is used to discretize
this system in the radial direction. To use this, we map each of the regions occupied
by the two fluids into [−1, 1]. In region i (=1 for the core, 2 for the annulus), r → ri
where r1 = 2r − 1, r2 = 2(r − a)/(a− 1) + 1. We expand (u, v, w, p)(r) in terms of
Chebyshev polynomials Tk(ri) = cos(k arccos ri). For example,

u1(r) =

N1∑
k=0

u1kTk(r1), u2(r) =

N2∑
k=0

u2kTk(r2). (3.1)

We express the derivatives of variables such as ui and products such as riui as
expansions in Chebyshev polynomials with coefficients that depend on the coefficients
uik . Formulas for these are in Orszag (1971) and Gottlieb & Orszag (1977). In
the incompressibility condition, v and w need to be expanded to the same degree
polynomial as u′ so the expansions for v and w are truncated at the (Ni − 1)th
Chebyshev polynomial. In the radial component of the equation of motion, p′

is required to the same accuracy as u′′ so p is also truncated at the (Ni − 1)th
polynomial. Together with δ, the total is 4N1 + 4N2 + 3 unknowns. In the core, we
express the continuity equation, the radial component of the momentum equation
and the other two components of the momentum equation, respectively, to degree N1,
(N1−1) and (N1−2), while in the annulus, the momentum equations are expanded to
one degree lower. There are seven interface conditions and three boundary conditions
to complete the system of equations.
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To form the discretized matrices for the operator A, we treat the terms that involve
the base flow, e.g. W (r)r2ux in fluid i, with a collocation scheme. In the linearized prob-
lem, the radial dependence of this term is of the form f(ri)u(ri) in fluid i. We use N+1
collocation points ri = cosφk , φk = kπ/N, k = 0, . . . , N so that Tn(ri) = cos(n arccos ri)
or Tn(cosφ) = cos nφ. At the collocation points, f(ri) = f(cosφk) and a Fourier co-
sine series of this function, extended as an even function over to −π so that it is
periodic with period 2π gives f(cosφ) =

∑∞
0 an cos(nφ), which is the Chebyshev series

expansion f(ri) =
∑∞

0 anTn(ri). At the collocation points, f(rik) =
∑N

0 an cos(nφk) =∑N
0 Cknan, where Ckn is a matrix of collocation values cos(nφk). The coefficients dm in

f(ri) u(ri) = f(cosφk) u(cosφk) =
∑N

m=0 dmTm(cosφk) =
∑N

m=0 f(cosφk)Ckmuim are ob-
tained in terms of the unknowns uik in (3.1) by noting that dn =

∑
m,k C

−1
nk cosφkCkmuim.

Convergence tests were done to decide on the optimal values for the truncations. The
numerical results were checked against those of Hu & Patankar (1995) which in-
clude the effects of all the parameters, and Joseph, Renardy & Renardy (1983) which
treats the case of zero surface tension and equal densities. Our code is indepen-
dent of the latter code. To compare with these results, we set the density ratio
ζ = ρ2/ρ1 to one, and J = 0; the Reynolds number of Joseph et al. (1983) is
Re and their complex wave speed is designated as C , related to our R1 and σ by
Re = a3R1/[(a

2 +m− 1)m], C = [(a2 +m− 1)/a2](iσ/α), where m = µ2/µ1 < 1. The m
used by Joseph et al. (1983) is µ1/µ2. Asymptotic formulas for long and short waves
are contained in §VI.1 (h) and §VI.1(i), respectively, of Joseph & Renardy (1993).

4. Analysis of bifurcated solutions for the Hopf–Hopf interaction
Bifurcation from the base solution (2.3)–(2.4) will be investigated for the situation

where criticality is achieved at an isolated value of the parameters by a complex
eigenvalue iω at axial wavenumber α and azimuthal wavenumber n = 1 and another
eigenvalue iω at the same α but azimuthal wavenumber n = −1.

In the x- and θ-directions, the solution is assumed to be periodic and expanded
in a Fourier series. The operator L(σ) has a one-dimensional nullspace at the zeroth
Fourier mode (d/dx = 0, d/dθ = 0) with p = constant and the other variables equal
to zero due to the fact that we can add an arbitrary constant to the pressure. To
make the pressure unique we normalize it.

We reduce the partial differential equations and boundary conditions governing the
problem (given in Appendix A) to two complex-valued ordinary differential equations
by applying the centre manifold reduction scheme. The reduction to the centre
manifold is described in Renardy (1989) for the two-layer Couette–Poiseuille flow,
and the methodology is analogous here. In the following, we shall take the existence
of a centre manifold for granted and do formal calculations. We view one of the
fluid parameters, e.g. the Reynolds number, as a bifurcation parameter. For instance,
we set λ = Re− Rec, where Rec is the critical value of a Reynolds number. Close to
criticality (λ = 0) we denote by ω1(λ) the eigenvalue which arises from perturbing iω,
by ζ1(λ) the eigenfunction belonging to ω1(λ) at azimuthal wavenumber n = 1, and
by ζ2(λ) the eigenfunction belonging to n = −1, satisfying

L(ω1(λ))ζk(λ) = 0, k = 1, 2. (4.1)

The eigenfunction ζ2 is retrieved from ζ1 by the azimuthal reflection n → −n,
v → −v. The eigenfunction computed in § 3 is used for ζ1(0). The two eigenfunctions
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have the forms

ζ1 = ζ̃1(r) exp(iαx+ iθ), ζ2 = ζ̃2(r) exp(iαx− iθ). (4.2)

The inner product (·, ·) at the discretized level corresponds to a weighted L2

inner product, in which the components of the first function are complex conju-

gated. At the continuum level, this is (g1, g2) =
∫ 1

−1
ḡ1(r̃)g2(r̃)(1− r̃2)−1/2dr̃. The

Chebyshev expansions of g1, g2 in r̃ results in a double summation under the
integral sign, which is calculated with the use of the orthonormalization condi-

tion
∫ 1

−1
Tn(r̃)Tm(r̃)(1− r̃2)−1/2dr̃ = (π/2)cnδnm, c0 = 2, cn = 1 for n > 0. We

drop the factors cnπ/2 and define a discretized inner product of two functions g1

and g2, expanded in Chebyshev polynomials, g1 =
∑N

i=0 g1iTi(r̃) exp(iα1x + iξ1θ),

g2 =
∑N

i=0 g2iTi(r̃) exp(iα2x+ iξ2θ), r̃ = r1 or r2, to be

(g1, g2) =

∫ 2π

0

exp[i(−ξ1 + ξ2)θ] dθ

∫ C

0

exp[i(−α1 + α2)x] dx∫ 2π

0

dθ

∫ C

0

dx

N∑
i=0

ḡ1ig2i.

Here, C represents a period in x, that is a multiple of 2π/α. Thus, unless −α1 +α2 = 0
and −ξ1 + ξ2 = 0, the inner product vanishes because of periodicity.

The eigenfunction b1 to the adjoint problem satisfies (b1,L(ω1(λ))Φ) = 0, where Φ
is arbitrary, and has the same dependence on θ and x as the respective eigenfunctions
ζ1. The adjoint eigenvector corresponding to ζ1 has the form b1 = b̃1(r) exp(iαx+ iθ).
In our calculations, we do not need to calculate the eigenfunction to the adjoint
problem, because we shall discretize the linear operator and perform the inner
products involving the adjoint problem based on finite-dimensional matrices. If Ld is
the matrix representing the discretized form of the operator L, then the discretized bk
is the eigenvector of the adjoint matrix L̄

T

d with eigenvalue ω̄1. In weakly nonlinear

theory, the solution is expanded as Φ ∼
∑2

i=1 ziζi +
∑2

i=1 z̄iζ̄i + . . ., where zi are
complex time-dependent amplitude functions. Appendix B contains the derivation of
the amplitude equations:

dz1/dt = ω1(λ)z1 + β1(λ)|z1|2z1 + β2(λ)|z2|2z1,
dz2/dt = ω1(λ)z2 + β1(λ)|z2|2z2 + β2(λ)|z1|2z2,

}
(4.3)

ω1(λ) = iω + ε1, where ω and the bifurcation parameter ε1 are real. The coefficients
βi obtained through the projections are defined in Appendix B. The equilibrium
solutions are given in the following.

4.1. Travelling waves (corkscrews)

For the travelling waves, one of the zi is zero. The corkscrews travel in the azimuthal
as well as the axial directions. We denote z1 = r1 exp(ir2t), where

r2
1 = −ε1/Re (β1, ) r2 = ω + Im (β1)r

2
1 , z2 = 0. (4.4)

The solution is supercritical if −ε1/Re (β1) > 0, and since the base flow is stable
for ε1 < 0, we require Re (β1) < 0 for the solution to exist above threshold. If
this condition is satisfied, then the solution branch is said to be ‘supercritical’. Since
our bifurcation problem involves a two-fold degeneracy, supercriticality alone is not
enough to imply the stability of that solution branch to small perturbations, and
there will be a further condition to be satisfied.
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Once we have a solution (z1, z2) = (a, 0), we can generate a family of solutions
(a exp(iφ), 0) by a shift in the axial or azimuthal directions or in time. To examine
the stability of this solution, we set z1 = (r1 + z̃1) exp(ir2t), z2 = z̃2 exp(ir2t). In the
transformed system, we introduce perturbations z̃1 = y1 exp(Λt), z̃2 = y2 exp(Λt),
¯̃z1 = y3 exp(Λt), and ¯̃z2 = y4 exp(Λt). The eigenvalues determining stability are
Λ = (−β1 + β2)r

2
1 and its complex conjugate, 0, and −2ε1. Thus for stability we

require

Re (β1) < 0, and Re (β2) < Re (β1). (4.5)

The zero eigenvalue is due to the one-parameter family of solutions which is generated
by a shift in t or θ. The appearance of the zero eigenvalue can be interpreted
alternatively in terms of the dimension of the torus covered by the solution (Fujimura
& Renardy 1995). The travelling wave solution represents a periodic orbit or a
1-torus. The one-parameter family of solutions generated by the phase shifts simply
moves the original solution along the trajectory curve, and therefore the solution
covers, in total, a 1-torus.

4.2. Standing waves (snakes)

The snake waves have both amplitudes |z1| = |z2| non-zero. We denote z1 = r1 exp(ir2t)
where

r2
1 = −ε1/(Re (β1) + Re (β2)), r2 = ω + (Im (β1) + Im (β2))r

2
1 . (4.6)

This solution exists for ε1 > 0 if (Re (β1) + Re (β2)) < 0, and this is the condition
for the snake solution to be a supercritical branch. In order to get an autonomous
system for the stability analysis, we transform out the factor exp(ir2t) by substituting
z1 = (z̃1 + r1) exp(ir2t), z2 = (z̃2 + r1) exp(ir2t). Linearizing about the base solution,
we again introduce perturbations z̃1 = y1 exp(Λt), and so on. The standing wave
solution is symmetric in the sense that the reflection θ → −θ, v → −v, z1 → z2

leaves the solution the same. Therefore the perturbations can be decoupled into even
modes (z1 = z2, z̄1 = z̄2) and odd modes (z1 = −z2, z̄1 = −z̄2). The eigenvalues are
0, 0,−2ε1, 2(Re(β1) − Re(β2))r

2
1. There are two zero eigenvalues, related to the fact

that the standing wave solution covers a 2-torus. The solution (4.6) is a 1-torus, and
the shift in θ generates a one-parameter family covering a 2-torus. The shift in x or t
simply moves the solution along its trajetory and does not generate a new manifold
of solutions. For stability, we require the two conditions

Re (β1 + β2) < 0, and Re (β1) < Re (β2). (4.7)

5. Pattern selection results
We present results for down-flows. The base velocity profiles for the cases we

consider are shown in figure 2(a–c). Since core–annular flows can admit base flows
that are downward in one region and upward in another, we define down-flows to be
those in which gravity is acting in the same direction as the dimensional centreline
velocity.

Some of the pattern selection results will be given in tabular form. For the
tabulated values of the wavenumbers α, the corresponding Im(σ) are given. The ε1

of the previous section denotes a perturbation to Re(σ) as the bifurcation point is
traversed. The calculation of the Landau coefficients yields the preferred pattern.
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Figure 2. Base velocity profiles representing the down-flows discussed in § 5. (a) m = 0.03, a = 1.7,
K = 0.10429, ζ = 1.1; (b) m = 1, ζ = 2, a = 1.7, K = 0.5; (c) m = 0.00166, ζ = 1.1, a = 1.7,
K = −0.5427.

5.1. Critical conditions

We begin with the parameters of Hu & Patankar (1995, figure 3b): a = 1.4, m = 0.01,
ζ = 1.1, R1 = 1, J = 0. Here, the n = 0, 1 modes are stable for long waves, the
n = 1 achieves the maximum growth rate at wavenumber α ≈ 1.7, and the other
modes are also unstable. The effect of adding surface tension is the stabilization of
the higher modes, shorter waves, and a destabilization of the axisymmetric mode due
to capillary instability. We balance these effects and choose J = 0.01, for which the
axisymmetric mode is only slightly destabilized, while the n > 2 modes are stabilized,
leaving only the n = 0, 1 modes unstable. By varying the density ratio ζ from 0.8
to 1.1, the magnitudes of the instabilities change but the signs are not affected; we
choose ζ = 1.1. There is more sensitivity to the radius ratio a and the viscosity
ratio m. When a = 1.5, 1.6, mode 1 develops long-wave instability. Mode 1 is further
destabilized as a increases as reported by Hu & Patankar (1995). Mode 1 is stable for
a = 1.1, 1.2, 1.3. Slight increases in m stabilize both modes, namely at m = 0.02 the
window of instability for mode 0 shrinks while that for mode 1 remains similar. At
m = 0.03, mode 0 is stable while mode 1 retains a window of instability. At m = 0.04,
mode 1 develops a long-wave instability as well as a separate window of O(1) wave
instability 0.3 6 α 6 1.6. In the search for a mode 1 criticality, we retain m = 0.03 and
examine a between 1.3 and 1.4. The delicate dependence on a is shown in figure 3(a).
In this manner a criticality is found for a = 1.37, α = 1.3, σ = −0.0004− 1.26i (there
is no round-off error in these values; in order to get Re(σ) closer to 0, we need
to evaluate the critical values of a and α to more significant figures than we have
given. These values for criticalities are sufficiently accurate for the application of the
ensuing nonlinear analysis). The growth rates are shown in figure 3(b) for modes 0
to 2. Higher modes and shorter waves are effectively stabilized by surface tension.
The wavenumbers in the range 1 < α < 1.5 are all close to criticality. The Reynolds
number is slightly increased in figure 3(c), resulting in the wavenumbers around 2.5
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Figure 3. (a) Growth rate Re(σ) versus wavenumber α for J = 0.01, R1 = 1, m = 0.03, ζ = 1.1,
mode 1. Effect of varying a. (b) Growth rate versus wavenumber for J = 0.01, m = 0.03, a = 1.37,
R1 = 1, ζ = 1.1, K = 0.10429. Mode 1 is at criticality. Modes 0,2, and higher are stable. (c) Growth
rate versus wavenumber for J = 0.01, m = 0.03, a = 1.37, R1 = 1.06, ζ = 1.1, K = 0.10429. Mode
1 at α = 1.3 and mode 0 at α = 2.6 are resonant and circled. (d) For the parameters of (c), the
imaginary part of the eigenvalue Im(σ) = w is plotted against α. Both modes 0 and 1 coincide, and
circles denote the resonant values corresponding to those of (c).

for mode 0 coming close to criticality, and the wavenumbers 1 to 2.5 for mode 1
being slightly above onset.

The critical situation of figure 3(b) is close to a resonant 2:1 mode interaction,
namely, mode 1 is at criticality with wavenumber αc = 1.3 and eigenvalue iω = −1.26i,
and mode 0 is critical with wavenumber 2αc and eigenvalue 2iω. The Reynolds number
is increased slightly for figure 3(c, d) to show that an interval of wavenumbers is close
to onset. Figure 3(c, d) shows the real and imaginary parts of the eigenvalues at these
wavenumbers. For the α = 1.3, mode 1, onset, for instance, a proper analysis should
incorporate the resonant interaction, and would show the existence of new solutions
that involve both modes 0 and 1. A diagnostic for the occurrence of resonant
situations is that the Landau coefficients become sensitive to small changes. In our
case, this is due to a near-singular matrix in the calculation of the interaction term
ψ12 (see Appendix B), and a pole for the Landau coefficient β2. Table 1 shows that
the Landau coefficient β1, which determines the supercriticality of the corkscrews,
varies smoothly, while the imaginary part of β2 changes from negative and large at
α = 1.2 to positive and large at α = 1.3, indicating that there is a pole here. The last
column denotes the solution type: in addition to the ‘c’ and ‘s’, stable corkscrews and
snakes, both supercritical, we have situations where only one solution is supercritical
and therefore both solutions are unstable. Thus, ‘cx’ in the last column denotes
the supercriticality of corkscrews but not snakes. The numerical results indicate
that at resonance, there is a change from a situation where snakes are subcritical and
corkscrews are supercritical to a situation where both are supercritical and corkscrews
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Amplitude

Snakes Corkscrews

ε1

Figure 4. Bifurcation diagram close to resonance. m = 0.03, ζ = 1.1, J = 0.01, K = 0.10429387,
a = 1.37, R1 = 1, α = 1.3, mode 1 onset.

α Im (σ) β1 β2 Pattern

1.0 −0.97 −12 + 62i 5− 109i s
1.1 −1.06 −10 + 59i 7− 196i s
1.2 −1.16 −8 + 56i 8− 629i cx
1.3 −1.26 −6 + 53i − 24 + 680i c
1.4 −1.36 −5 + 50i − 3 + 242i s
1.5 −1.45 −3 + 49i 0.5 + 157i s
1.9 −1.85 −1 + 47i 3 + 87i cx
2.0 −1.94 −1 + 48i 3 + 83i cx

Table 1. a = 1.37, R1 = 1.0, m = 0.03, ζ = 1.1, K = 0.10429387, J = 0.01. The last column
indicates stable snakes (s) or stable corkscrews (c) when both solutions are supercritical; cx denotes
the supercritical corkscrews when snakes are subcritical and both solutions are unstable.

are stable. The results in table 1 do not account for the interaction of the n = 0
and n = ±1 modes. When the Reynolds number is increased to R1 = 1.06, these
numerical results are robust. There is sensitivity to changes in a. Figure 4 shows the
bifurcation diagram as the parameter ε1 varies.

When a changes from 1.37, the modes shift away from being resonant (figure 5(a)
shows a = 1.45). Table 2 lists the conditions for which mode 1 is the critical mode and
other modes are stable. As the annular gap widens, it is found that the critical mode
shifts from 1 to 0. Figure 5(b) shows this for a = 1.9: mode 0 is already unstable
at R1 = 0.3 for 0 < α < 0.9 while other modes are stable. Thus, table 3 lists the
conditions for which mode 1 is neutral at onset, while mode 0 is already unstable due
to capillary effects. When the Reynolds number R1 is increased, the added shear has
a stabilizing effect on the capillary instability for mode 0 while mode 1 is destabilized.
At a = 1.9, either mode 0 is unstable for lower Reynolds numbers or both modes
0 and 1 are unstable for higher Reynolds numbers, with mode 1 becoming more
unstable than mode 0 (at a = 1.9, R1 = 0.4, mode 0 is unstable for 0.4 < α < 0.9 with
maximum growth rate Re(σ) = 0.0005 at α = 0.7, mode 1 is unstable for 0 < α < 0.7
with Re(σ) = 0.002 at α = 0.6, thus mode 1 has the higher growth rate). In these
cases where mode 1 dominates the instability at slightly higher Reynolds numbers,
the nonlinear analysis for the neutral situations listed in table 3 may be relevant.
In both tables 2 and 3, the last columns denote the solution type: s denotes stable
snakes, c denotes stable corkscrews. Both solution types are supercritical for ε1 > 0,
the regime where the base flow is unstable, so that one type is stable. The trend is
that snakes are preferred when the annular gap is wider.

The base velocity profiles for the situations in tables 2 and 3 are of the type
shown in figure 2(a). Note that since the dimensional centreline velocity W ∗

0 (0) =
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Figure 5. Growth rate versus wavenumber for J = 0.01, m = 0.03, ζ = 1.1, K = 0.10429.
(a) a = 1.45, R1 = 0.6; (b) a = 1.9, R1 = 0.36.

a R1 α Im (σ) β1 β2 Pattern

1.37 1.0 1.3 −1.26 −6 + 53i −25 + 680i c
1.4 0.8 1.0 −0.98 −27 + 55i −4− 65i s
1.45 0.6 0.8 −0.79 −41 + 17i −1− 19i s
1.5 0.5 0.7 −0.70 −21 + 0.3i −0.7− 9i s
1.6 0.43 0.6 −0.61 −5− 0.2i −0.5− 3i s
1.7 0.38 0.5 −0.51 −2 + 0.7i −0.3− 0.9i s

Table 2. Critical conditions for m = 0.03, ζ = 1.1, K = 0.10429387, J = 0.01. The last column
shows whether the snakes or corkscrews are stable.

(ρ1−ρ2)gR
2
1A/[(K−1)4µ2], the sign of gravity is the same as the sign of (1−ζ)A/(K−1).

Thus, for our parameters, g is positive and points in the same direction as the
centreline velocity; this signifies down-flow. For K = 0.10429 and ζ = 1.1, we see
from f∗/(ρ1g) = (1 − ζK)/(K − 1) that the applied pressure gradient f∗ acts in the
opposing sense to gravity and almost balances out the effect of gravity for the core
fluid.
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Figure 6. Growth rate versus wavenumber for free fall, ζ = 1.1, K = 1/ζ, m = 0.001, R1 = 1,
(a) a = 1.2, (b) a = 1.9. Modes 0 (solid line), 1 (dashed) 2 (dotted).

a R1 α Im (σ) β1 β2 Pattern

1.8 0.37 0.5 −0.51 −1 + 0.9i −0.4− 0.09i s
1.9 0.36 0.5 −0.52 −0.6 + 0.9i −0.5 + 0.2i s

Table 3. Conditions for mode 1 to be neutral. Mode 0 onsets at a lower Reynolds number. m = 0.03,
ζ = 1.1, K = 0.10429387, J = 0.01. The last column shows whether the snakes or corkscrews are
stable.

5.2. Free fall

In free fall (f∗ = 0), K = 1/ζ. We begin by considering the same fluid parameters
as above (m = 0.03, ζ = 1.1, R1 = 1, J = 0.01), and find that mode 0 onsets first.
The pattern selection analysis is performed at the wavenumber of maximum growth
rate close to neutral situations for mode 1. In table 4(a), m = 0.03, ζ = 1.1, mode
0 attains the largest growth rate for a = 1.4 and mode 1 for a = 1.5 (the growth
rate profile is similar to figure 6a) and higher. At yet larger values of a, for example
a = 5, only mode 0 is unstable. This is due to capillary effects for the relatively thin
filament at the core, since the shear rate at the interface is of small scale. Corkscrews
are preferred unless the annulus width becomes large. A decrease in the Reynolds
number eventually leads to mode 0 attaining the largest growth rate due to capillary
instability. For the Reynolds number in table 4(b), for instance, mode 1 has the largest
growth rates for a = 1.6 and higher, while mode 0 has the largest growth rates for the
lower values of a. The growth rates here are however small, and we have applied the
pattern selection analysis at the points of maximum growth rates. The results remain
robust at the neutral situations, for example the a = 1.2 entry in table 4(b) becomes
neutral with α = 4.2 at R1 = 0.7, where corkscrews are again stable. Calculations
were performed for lower Reynolds numbers where mode 1 attains neutral conditions
and, for example, at Reynolds number 0.6, the preferred patterns for a = 1.3 to 1.6
of table 4(b) remain the same. The results in table 4 indicate that when there is
more of the annular fluid, snakes are preferred while corkscrews are preferred, when
the annulus is narrow. This trend is also observed at other values of m, namely
m = 0.1, 0.001. At m = 0.1, R1 = 1, mode 0 attains the largest growth rate for a = 1.3
to 1.5 while for higher a = 1.6 to 1.9, mode 1 attains the largest growth rate. The
pattern selection analysis is performed at the largest growth rate wavenumber for
mode 1. Again, the corkscrews are stable when the annulus is not too wide, a = 1.3 to
1.7, and snakes are stable when a = 1.8, 1.9. At m = 0.001, R1 = 1, 1.5, mode 1 has
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a α Im (σ) β1 β2 Pattern

(a) R1 = 1 1.4 2.8 −2.6 −2.2 + 40i −2.6 + 38i c
1.5 2.2 −2.1 −1.9 + 27i −2.1 + 25i c
1.6 1.8 −1.7 −1.67 + 18i −1.71 + 15i c
1.7 1.6 −1.5 −1.44 + 13i −1.35 + 10i s
1.8 1.4 −1.3 −1.16 + 9i −1.04 + 7i s
1.9 1.3 −1.3 −0.97 + 7i −0.78 + 5i s
2.0 1.2 −1.2 −0.8 + 5i −0.6 + 3i s
3.0 0.8 −0.8 −0.1 + 0.9i 0.03 + 0.5i s

(b) R1 = 0.8 1.2 4.6 −4.0 −0.8 + 32i −1 + 30i c
1.3 3.4 −3.1 −1.4 + 40i −1.8 + 39i c
1.4 2.6 −2.4 −1.6 + 34i −1.8 + 31i c
1.5 2.2 −2.1 −1.540 + 27i −1.538 + 24i s
1.6 1.8 −1.7 −1.36 + 18i −1.25 + 15i s
1.7 1.6 −1.5 −1.21 + 13i −0.97 + 11i s
1.8 1.4 −1.3 −1.0 + 9i −0.8 + 7i s
1.9 1.3 −1.3 −0.9 + 7i −0.6 + 5i s

Table 4. Pattern selection analysis is performed at the maximum growth rate wavenumber for
mode 1 at m = 0.03, ζ = 1.1, K = 1/ζ, J = 0.01, free fall.

a α Im (σ) β1 β2 Pattern

1.2 0.4 −0.15 −1.3− 50i −1.5− 90i c
1.3 0.7 −0.36 −0.8− 24i −1.1− 30i c
1.4 0.8 −0.49 −0.6− 13i −0.9− 9i c
1.5 0.8 −0.55 −0.5− 8i −0.8− 3i c
1.6 0.8 −0.60 −0.4− 5i −0.7− 0.9i c
1.7 0.8 −0.63 −0.4− 4i −0.7− 0.1i c
1.8 0.7 −0.58 −0.3− 2i −0.5− 0.1i c
1.9 0.7 −0.60 −0.3− 2i −0.4− 4i c
2.0 0.7 −0.61 −0.25− 1.5i −0.36− 0.08i c
2.1 0.6 −0.54 −0.18− 0.9i −0.24− 0.09i c
2.3 0.6 −0.55 −0.16− 0.6i −0.19− 0.1i c
3.0 0.4 −0.39 −0.056− 0.09i −0.04− 0.07i s

Table 5. Pattern selection analysis is performed at the maximum growth rate wavenumber for
mode 1 at m = 1, ζ = 2, K = 1/ζ, J = 0.01, R1 = 1, free fall.

the larger growth rate for the smaller a = 1.2 to 1.6 and mode 0 for the larger a = 1.7
to 1.9 (figure 6). It is interesting that in the previous cases, the trend was the reverse.
The pattern selection analysis for R1 = 1 at the largest growth rate wavenumber for
mode 1 yields stable corkscrews for a = 1.2 to 1.5 and stable snakes for a = 1.6 and
higher.

Next, consider free fall for equal viscosity and a heavier fluid outside: m = 1,
ζ = 2, K = 0.5, R1 = 1. The base flow for a = 1.7 is shown in figure 2(b). This case
is focused on the effect of density stratification. For a = 1.2 to 3 in table 5, only mode
1 is unstable. Modes 0 and 2 are stable (see figures 7a, b), and in particular, mode
1 changes smoothly from figure 7(a) to 7(b). At a = 1.1, all modes are stable. For
the cases a = 1.2 to 3, mode 1 is unstable for long waves, and achieves a maximum
growth rate at an order-1 wavenumber. The pattern selection results in table 5 favour
corkscrews unless the annulus is large. For larger annulus values, such as a = 5,
mode 1 is stabilized and mode 0 is destabilized by capillarity. Calculations were also



310 Y. Y. Renardy

(a)

(b)

2.01.61.20.80.40
–10

–8

–6

–4

–2

0

2.01.61.20.80.40
–6

–4

–2

0

2

Wavenumber

(×10–4)

(×10–3)

G
ro

w
th

 r
at

e
G

ro
w

th
 r

at
e

Figure 7. Growth rate versus wavenumber for free fall, ζ = 2, K = 0.5, m = 1, R1 = 1.
(a) a = 1.2 Line styles as figure 6. (b) a = 1.9.

performed at the neutral stability points, e.g. a = 1.9, α = 1.2, σ = −0.0001−i, and
again the preference for corkscrews is robust.

5.3. Experiments of Bai, Chen & Joseph (1992)

Figure 3 of Joseph et al. (1997) shows a variety of flow types in down-flow in a
vertical pipeline experiment with oil and water, which was earlier reported in Bai et
al. (1992). Flow type (c) in the regime called ‘disturbed core annular flow’ consists of
corkscrew waves. There is some variation in the observed data: the conditions may
not be exactly steady and the arrangement may have narrower annuli. Snake waves
were not observed. Further details are given in Hu & Patankar (1995, §4) where the
parameters are R1 = 1.2, a = 1.7, m = 0.00166, ζ = 1.1, K = −0.54270708; their
figure 2 shows that mode 1 has the largest growth rate at α = 0.531 and mode 0 has
much smaller growth rates, though it has two bands of unstable wavelengths, one
for long waves due to interfacial tension and the other at O(1) wavenumbers due to
shear. They show that the wavelengths and wave speeds agree with the experimental
values. Under these conditions, we need to examine what would happen if only the
non-axisymmetric mode were excited. This could occur, for instance, if the initial
condition favours it. We can also cover a range of Reynolds numbers while keeping
the relative driving forces K constant, to examine neighbouring regimes. When the
Reynolds number R1 is decreased, the O(1) wavenumber instabilities are stabilized
since these are primarily due to shear, while the long-wave axisymmetric modes are
destabilized due to capillary breakup. Thus, as the Reynolds number is decreased,
the growth rates for mode 1 decrease, while those of the longer waves at mode 0
increase and overtake them at approximately R1 = 0.2. This is illustrated in figure 8.
We show the pattern selection results in figure 9 for 0.2 < R1 < 1.4 which includes
the parameter values of interest. The base velocity profile is of the type in figure
2(c). Figure 10 shows the pattern selection results at another wavenumber α = 0.4
where mode 1 attains largest growth rates for the lower Reynolds numbers, showing
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Figure 8. Growth rates versus wavenumber for K = −0.5427, a = 1.7, ζ = 1.1, m = 0.00166,
J = 0.06. (a) R1 = 1.2, (b) R1 = 0.2.
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Figure 9. Pattern selection results for K = −0.5427, a = 1.7, α = 0.531, ζ = 1.1, m = 0.00166,
J = 0.06. (a) The real parts of the Landau coefficients (cf. (4.5), (4.7)); a stability condition for
corkscrews is that Re (β2) < Re (β1), and vice versa for snakes. (b) The second stability condition,
that of supercriticality, for corkscrews is that Re (β1) < 0, and for snakes that Re (β1 +β2) < 0. The
results from both (a) and (b) are combined in the middle plot to show the intervals of Reynolds
numbers R1 in which corkscrews (C) are preferred, snakes (S) are preferred, or neither (N).
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Figure 10. As figure 9 but for α = 0.4.

the preference for corkscrews around R1 = 1.2. It is interesting that our bifurcation
analysis shows this and that snake waves were not observed in the experiments.

This work was supported by the National Science Foundation under Grant
No. CTS-9307238, No. CTS-9612308 and the Office of Naval Research under Grant
No. N00014-92-J-1664. Part of this work was performed at the Isaac Newton Institute
for Mathematical Sciences and as Visiting Fellow at Clare Hall, Cambridge (UK).

Appendix A. Definition of the operators
The governing equations, interface and boundary conditions are represented schema-

tically in the form LΦ = N2(Φ,Φ) + N3(Φ,Φ,Φ), where L, N2, N3 are the linear,
quadratic and cubic operators, respectively, and Φ is the perturbation to the base
flow (2.3)–(2.4). We write LΦ = AΦ+ (d/dt)BΦ. These operators may be represented
by eighteen components: incompressibility and three components of the momentum
equation in each fluid, three boundary conditions, and seven interface conditions. The
corresponding components of N2(Φ,Φ) are denoted by (H1, H2, . . . , H18), and those
of N3(Φ,Φ,Φ) by (Q1, . . . , Q18). No nonlinear terms appear in the incompressibility
condition and the boundary conditions on the walls, and therefore the corresponding
components of N2 and N3 are zero. The other components of N2 are labelled H1

to H18, and similarly the Qi, i = 1, . . . , 18, in accordance with the labelling of the
components below. The nonlinear terms appear in computations in the form N2(f, g)
and N3(f, g, h). With the following definition for the components of N2(Φ,Φ), we define
N2(f, g) to be the average of the two permutations N2(f, g) and N2(g, f). For example,
if N2(Φ,Φ) = Φ∂Φ/∂x, then N2(f, g) = 0.5(f∂g/∂x+ g∂f/∂x). Similarly, N3(f, g, h) is
defined as one sixth of the six possible permutations of the cubic expression. Primes
denote ∂/∂r. [[x]] = x1 − x2. The normal n and tangents t1, t2 to the interface are
n = ∇F/|∇F |, the interface position is r = R/R1 = 1 + δ, ∇F = er − (Rθ/R)eθ − Rxex,
t1 = (eθ + (Rθ/R)er)[1 + (R2

θ/R
2)]−1/2, t2 = (ex + Rxer)(1 + R2

x)
−1/2. The normal stress

condition is n · [−([[P + p]]ρ1W
2
0 + 2H∗T ∗)n + [[2µD[u∗]]] · n] = 0, where T ∗ is the

surface tension coefficient, D[u∗] = (1/2)(∇u∗ + ∇u∗T ), u∗ is the total dimensional
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velocity, ∇u∗ is

(W ∗
0 (0)/R1)

 ur vr wr +Wr
1

r
uθ −

v

r

1

r
vθ +

u

r

1

r
wθ

ux vx wx

 . (A 1)

The curvature is 2H∗ = (RRθθ(1 + R2
x) + RRxx(R

2 + R2
θ) − R2(1 + R2

x) − 2R2
θ

− 2RRθRxRxθ)/(R
2 +R2

θ +R2R2
x)

3/2. The shear stress conditions are [[ti · 2µD[u∗] · n]] =
0, i = 1, 2.

In the core region 0 6 r 6 1 (subscript 1),

(AΦ)1 = ru′ + u+ rwx + vθ,

(AΦ)2 = W (r)r2ux + (ρ1/ρ)r2p′ − (1/Ri)
(
− u+ ru′ + r2u′′ + uθθ + r2uxx − 2vθ

)
,

(AΦ)3 = W (r)r2vx + (ρ1/ρ)rpθ − (1/Ri)
(
− v + rv′ + r2v′′ + vθθ + r2vxx + 2uθ

)
,

(AΦ)4 = ur2W ′(r) + wxr
2W (r) + (ρ1/ρ)r2px − (1/Ri)

(
rw′ + r2w′′ + wθθ + r2wxx

)
.

The corresponding expressions for the annulus 1 6 r 6 a (subscript 2) are denoted
(AΦ)5, . . . , (AΦ)8. The interface conditions are the kinematic condition, the continuity
of velocity and stress components, and the normal stress condition which are given in
full in Joseph & Renardy (1993, chap. II.1, p. 47). Expanded for small perturbations,
these are, respectively, at r = 1,

(AΦ)9 = W1δx − u(1), (AΦ)10 = u1 − u2,

(AΦ)11 = v1 − v2, (AΦ)12 = w1 − w2 + δW ′
1 − δW ′

2,

(AΦ)13 = [[(µ/µ1)(w
′ + ux)]] + δ[[(µ/µ1)W

′′]], (AΦ)14 = [[(µ/µ1)(v
′ + uθ − v)]],

(AΦ)15 = −R1[[p]]− (J/R1)(δ + δθθ + δxx) + 2[[(µ/µ1)u
′]].

The boundary conditions yield (AΦ)16 = u, (AΦ)17 = v, and (AΦ)18 = w at r = a.
The components of BΦ are

(BΦ)1 = 0, (BΦ)2 = r2u1, (BΦ)3 = r2v1, (BΦ)4 = r2w1, (BΦ)5 = 0,

(BΦ)6 = r2u2, (BΦ)7 = r2v2, (BΦ)8 = r2w2, (BΦ)9 = δ,

and (BΦ)i = 0, i = 10, . . . , 18. The quadratic components in fluid 1 are

H1 = 0, H2 = −r2uu′ − rvuθ + rv2 − r2wux,

H3 = −r2uv′ − rvvθ − ruv − r2wvx, H4 = −r2uw′ − rvwθ − r2wwx,

and the corresponding components in fluid 2 are H5, . . . , H8. The interface conditions
at r = 1 contribute

H9 = −δδxW ′
1 + δu′1 − w1δx − v1δθ, H10 = −δu′1 + δu′2,

H11 = −δv′1 + δv′2, H12 = −δw′1 + δw′2 − 1
2
δ2W ′′

1 + 1
2
δ2W ′′

2 ,

H13 = −δ[[(µ/µ1)(w
′′ + u′x)]]− δx[[(2µ/µ1)(u

′ − wx)]] + δθ[[(µ/µ1)(wθ + vx)]]

− 1
2
δ2[[(µ/µ1)W

′′′]],

H14 = −δ[[(µ/µ1)(v
′′ + u′θ − v′ − uθ + v)]]− 2δθ[[(µ/µ1)(u

′ − vθ − u)]]
+δx[[(µ/µ1)(wθ + vx)]],

H15 = R1δ[[p′]]− 2δ[[(µ/µ1)u
′′]] + (J/R1)

(
1
2
(−δ2

θ + δ2
x)− δ2 − 2δδθθ

)
+2δδx[[(µ/µ1)W

′′]] + 2δθ[[(µ/µ1)(uθ + v′ − v)]] + 2δx[[(µ/µ1)(ux + w′)]],
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Hi = 0, i = 16, . . . , 18. The only contributions to cubic terms come from the interface
conditions. Qi = 0, i = 1, . . . , 8, 16, . . . , 18. At r = 1,

Q9 = − 1
2
δ2δxW

′′
1 + 1

2
δ2u′′1 − δw′1δx + v1δδθ − δv′1δθ,

Q10 = − 1
2
δ2u′′1 + 1

2
δ2u′′2 , Q11 = − 1

2
δ2v′′1 + 1

2
δ2v′′2 ,

Q12 = − 1
2
δ2w′′1 + 1

2
δ2w′′2 − 1

6
δ3W ′′′

1 + 1
6
δ3W ′′′

2 ,

Q13 = − 1
2
δ2[[(µ/µ1)(w

′′′ + u′′x)]]− δδx[[(2µ/µ1)(u
′′ − w′x)]] + δθδx[[(µ/µ1)(v

′ + uθ − v)]]
+δδθ[[(µ/µ1)(w

′
θ + v′x − vx − 2wθ)]]

+δ2
x[[(µ/µ1)(w

′ + ux)]] + δ2
xδ[[(µ/µ1)W

′′]]− 1
6
δ3[[(µ/µ1)W

iv]],

Q14 = −δ2[[(µ/µ1)
(

1
2
(v′′′ + u′′θ − v′′)− u′θ + v′ + uθ − v

)
]] + δ2

θ[[(µ/µ1)(v
′ + uθ − v)]]

−2δδθ[[(µ/µ1)(u
′′ − v′θ − 2u′ + 2vθ + 2u)]] + δxδθ[[(µ/µ1)(w

′ + ux)]]

+δδxδθ[[(µ/µ1)W
′′]] + δxδ[[(µ/µ1)(w

′
θ + v′x − wθ)]],

Q15 = R1
1
2
δ2[[p′′]]− (J/R1)

(
1
2
δδ2

x − 3
2
δδ2

θ + 3
2
δθθδ

2
θ + 1

2
δθθδ

2
x + 1

2
δxxδ

2
θ + 3

2
δxxδ

2
x

−δ3 + 2δθδxδθx − 3δ2δθθ

)
− δ2[[(µ/µ1)u

′′′]] + δ2δx[[(µ/µ1)W
′′′]]

+4δδθ[[(µ/µ1)(−v′ + v − uθ + 1
2
(u′θ + v′′))]] + 2δ2

θ[[(µ/µ1)(u
′ − u− vθ)]]

−2δxδθ[[(µ/µ1)(vx + wθ)]] + 2δ2
x[[(µ/µ1)(u

′ − wx)]] + 2δδx[[(µ/µ1)(u
′
x + w′′)]].

Appendix B. Derivation of the amplitude equations
We follow the methodology of Renardy (1989). The components of the adjoint

eigenvector b1 at (r, θ, x) are denoted by h1, . . . , h18. These components correspond to
the 18 components of the governing equations and conditions set out in Appendix A.
The components of b2 are (h1, h2, −h3, h4, h5, h6, −h7, h8, h9, h10, −h11, h12, h13, −h14,
h15, h16, −h17, h18). The normalization condition is

(bi,Bζi) = δij , i, j = 1, 2. (B 1)

Here, b1 and ζ1 are ∼ exp(iθ), ζ2 ∼ exp(−iθ), so that (b1,Bζ2) is zero from the integral
over θ.

Any real-valued function Φ can be decomposed in the form

Φ = Φ1 +Ψ, Φ1 =

2∑
i=1

ziζi +

2∑
i=1

z̄iζ̄i, (B 2)

where zi are complex time-dependent amplitudes and Ψ represents a linear com-
bination of eigenvectors (and possibly generalized eigenvectors) belonging to stable
eigenvalues.

Suppose Ψ represents an eigenvector belonging to an eigenvalue s, not equal to
ω1(λ). Then L(s)Ψ = 0 and hence (bi, (A+sB)Ψ ) = 0. But A∗bi = −ω̄1(λ)B

∗bi and thus
(bi, (A + sB)Ψ ) = (bi,AΨ ) + s(bi,BΨ ) = (A∗bi, Ψ ) + s(bi,BΨ ) = (−ω1(λ) + s)(bi,BΨ ).
Therefore, (bi,BΨ ) = 0, i = 1, 2. Since (bi, (A + ω1(λ)B)Ψ ) = 0, we also have
(bi,AΨ ) = 0, i = 1, 2. We have (A + ω̄1(λ)B)ζ̄i = 0, hence (bj, (A + ω̄1(λ)B)ζ̄i) = 0,

and together with ω̄1 6= ω1, we conclude that (bj, Bζ̄i) = 0 for i, j = 1, 2.
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We take the inner product of BΦ with bi, where Φ satisfies the expansion (B 2), and
make use of the normalization (B 1), and obtain

zi = (bi,BΦ), i = 1, 2.

A projection operator Π is defined such that it picks out the components of
Φ that consist of the critical modes and annihilates the stable modes: ΠΦ =
2 Re(

∑2
i=1(bi,BΦ)ζi), so that Ψ = (I − Π)Φ in the above decomposition. We

can define an analogous decomposition of a function f which represents right-
hand sides for the equations, i.e. components f1 to f18. This decomposition
is motivated by the normalization condition (B 1) and the decomposition (B 2):
f =

∑2
i=1(bi, f)Bζi +

∑2
i=1(b̄i, f)Bζ̄i + g. Here (bi, g) = 0, i = 1, 2. With the projection

operator Π̃ defined as Π̃f = 2 Re(
∑2

i=1(bi, f)Bζi), we have g = (I − Π̃)f.
The inner product of (2.6) with bi is formed, where LΦ = (A + Bd/dt)Φ. Using

(bi,AΦ) = −ω1(λ)(bi,BΦ), we obtain

dzi
dt
− ω1(λ)zi = (bi,N2(Φ,Φ) + N3(Φ,Φ,Φ)), i = 1, 2. (B 3)

Next, the projection I − Π̃ is applied to (B 2). Since Aζi = −ω1(λ)Bζi, LΦ =∑2
i=1(d/dt − ω1)ziBζi +

∑2
i=1(d/dt − ω̄1)z̄iBζ̄i + LΨ . The application of I − Π̃ to

the terms under summations yields zero. Hence (I − Π̃)LΦ = (I − Π̃)LΨ . Using
(bi,BΨ ) = 0 and (bi,AΨ ) = 0, Π̃LΨ = 0 and thus(

A + B
d

dt

)
Ψ = N2(Φ,Φ)+N3(Φ,Φ,Φ)−2 Re

(
2∑
i=1

(bi,N2(Φ,Φ) + N3(Φ,Φ,Φ))Bζi

)
.

(B 4)
Only quadratic terms in the asymptotic approximation to the centre manifold

Ψ = τ(z1, z2) are required. Thus, for small solutions,

Ψ = Ψ2 + . . . , Ψ2 = 2 Re

(
2∑

i,j=1

zizjψij + ziz̄jχij

)
,

where the dots indicate terms of order higher than quadratic. The small periodic
solutions, taking into account the nonlinear terms, are found on the centre manifold.
These are solutions close to the linear eigenfunctions.

Without loss of generality, the symmetry conditions ψij = ψji, χij = χ̄ji, i, j = 1, 2,
are assumed. The expansion for Ψ is inserted into (B 4) and (B 3) is used to express
the time derivatives dzi/dt. By comparing quadratic terms, we obtain

(A + 2ω1(λ))B)ψij = N2(ζi, ζj)−
2∑
k=1

(bk,N2(ζi, ζj))Bζk −
2∑
k=1

(b̄k,N2(ζi, ζj))Bζ̄k,

Aχij = N2(ζi, ζ̄j)−
2∑
k=1

(bk,N2(ζi, ζ̄j))Bζk −
2∑
k=1

(b̄k,N2(ζi, ζ̄j))Bζ̄k,

for i, j = 1, 2. In the computation of the ψij and χij , many of the inner products
vanish. When the inner product of a vector with bi is calculated, only those terms
with the same x and θ dependences as the corresponding eigenfunction ζi remain
and the rest are zero. For example, in the equation for ψ11, N2(ζ1, ζ1) is proportional
to exp(2iαx + 2iθ) and none of the ζk or ζ̄k has this dependence, so the summation
terms vanish. Moreover, we only need to evaluate ψ11 at λ = 0, and hence we
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compute it from (A + 2ω1(0)B)ψ11 = N2(ζ1, ζ1). Similarly, the summation terms in
the χij equations drop out altogether and we have (A + 2ω1(0)B)ψij = N2(ζi, ζj),

Aχij = N2(ζi, ζ̄j), where i, j = 1, 2, and ω1(0) = iω.
The equations governing the components (u, v, w, p, δ) for χ11 decouple and we

discuss them here. Since χ11 has no Fourier dependence on x and θ, incompressibility
implies ru′ + u = 0, which together with the boundary condition yields u = 0 in the
entire domain. Putting d/dx and d/dθ, the equations for the variables decouple. The
pressure p in χ11 satisfies

r2p′ = H2 of N2(ζ1, ζ̄1), (1/ζ)r2p′ = H6 of N2(ζ1, ζ̄1),

−R1[[p]]−
J

R1

δ = H15 of N2(ζ1, ζ̄1).

Since there is a family of modes p =constant, u = v = w = δ = 0, we eliminate them
by requiring that p1 = 0 at r = 1. The component v of χ11 satisfies

−(1/R1)(−v+rv′+r2v′′) = H3 of N2(ζ1, ζ̄1), −(1/R2)(−v+rv′+r2v′′) = H7 of N2(ζ1, ζ̄1),

v1 − v2 = H11 of N2(ζ1, ζ̄1), [[(µ/µ1)(v
′ − v)]] = H14 of N2(ζ1, ζ̄1),

and the boundary condition is v = 0 at r = a. The component w of χ11 satisfies

−(1/R1)(rw
′ + r2w′′) = H4 of N2(ζ1, ζ̄1),

−(1/R2)(rw
′ + r2w′′) = H8 of N2(ζ1, ζ̄1),

w1−w2 +δ[[W ′]] = H12 of N2(ζ1, ζ̄1), [[(µ/µ1)w
′]]+δ[[(µ/µ1)W

′′]] = H13 of N2(ζ1, ζ̄1),

and the boundary condition is w = 0 at r = a. The H9, H10 of N2(ζ1, ζ̄1) are 0. Also,
for this zeroth Fourier component, we need to evaluate δ in order to conserve volume.
This yields, for the core radius at r = 1 + h(x, θ),∫ 2π

θ=0

∫ 2π/αc

x=0

(1 + h)2dθdx =

∫ ∫
1dθdx, →

∫ ∫
2h+ h2dθdx = 0. (B 5)

The Fourier expansion of the interface perturbation is

h =

∞∑
n=−∞

∞∑
m=−∞

hmne
inθ+imαcx,

corresponding to the expansion for the solution (B 2) where, for example, h11 is the
interface perturbation (δ) from the mode ζ1 and h−1−1 is the interface perturbation
(δ) from the mode ζ̄1. Equation (B 5) correct to quadratics yields 2h00 +2h11h−1−1 = 0.
Here, h00 is composed of the interface perturbation δ for χ11 and for χ̄11. Thus the
δ for χ11 is − 1

2
(δ of ζ1)(δ of ζ̄1). We use this in the equations above. The pressure

gradient in the axial direction in the nonlinear analysis is fixed, since we are not
introducing a perturbational dp/dx.

We obtain from (B 3)

dzi
dt
−ω1(λ)zi = (bi,N2(Φ1, Φ1))+(bi,N3(Φ1, Φ1, Φ1))+2(bi,N2(Φ1, Ψ2)), i = 1, 2. (B 6)

The quadratic term N2(Φ1, Φ1) contains all combinations of the interactions of the
eigenfunctions, and there are no terms with the same x and θ dependences as the
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vectors ζi: thus, the first inner product vanishes. This system is of the form

dzi
dt

= Fi(z1, z2, λ), i = 1, 2. (B 7)

There is further simplification because some of the coefficients in (B 6)–(B 7) are
related to each other. The symmetry under reflection n → −n, v → −v changes ζ1

to ζ2, b1 to b2, ψ11 to ψ22, ψ12 stays as it is, χ11 to χ22, χ12 to χ21, F1 to F2, and so
on. Hence, (b2,N2(χ22, ζ2)) = (b1,N2(χ11, ζ1)), (b2,N2(ψ22, ζ̄2)) = (b1,N2(ψ11, ζ̄1)). In this
way, we can relate the coefficients in F2 to the coefficients in F1. This leaves two
coefficients in the normal form equations:

F1(z1, z2, λ) = ω1(λ)z1 + β1(λ)|z1|2z1 + β2(λ)|z2|2z1,
F2(z1, z2, λ) = ω1(λ)z2 + β1(λ)|z2|2z2 + β2(λ)|z1|2z2;

}
(B 8)

β1(λ) = (b1, 2N2(ζ̄1, ψ11) + 4N2(ζ1, χ11) + 3N3(ζ1, ζ1, ζ̄1)),
β2(λ) = (b1, 4N2(ζ̄2, ψ12) + 4N2(ζ2, χ12) + 4N2(ζ1, χ22) + 6N3(ζ1, ζ2, ζ̄2)).

}
(B 9)

We let ω1(λ) = iω + ε1, where ω and the bifurcation parameter ε1 are real.
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